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A relation is pointed out between the interaction of a pair of impurity atoms in a metal and the isotropic 
part of the interference term in their residual resistivity. The relation is established for weak, far apart, and 
magnetic or nonmagnetic scatterers in a free-electron gas. It should hold approximately down to the nearest-
neighbor distance for alloys with normal or rare-earth components. In all cases, both effects are described by 
oscillating functions of the distance between the two scatterers, with the same phase. An increase of residual 
resistivity with local order results. 

I. INTRODUCTION 

THE nature of local order in metallic solid solutions 
has been much studied in recent years,1 and its 

physical origin ascribed to the effect on its neighbors 
of the long-range oscillations of the perturbing potential 
due to a solute atom.2 The setting up of such a local 
order is known to alter the electrical resistivity; and 
these changes have been explained fairly satisfactorily 
as due to changes in interference effects between 
scatterers.3,4 

The purpose of this note is to point out a direct 
relation between the interaction energy of two scat
terers and the isotropic part of the interference in the 
resistivity. This relation will be proved for a gas of free 
electrons, and when the scatterers are spherically sym
metrical, weak and not too near to each other. The 
scatterers can be magnetic or nonmagnetic. These con
ditions should apply approximately, even for impurities 
in nearest-neighbor positions, for normal or rare-earth 
metals; in semimetals it should only hold at very large 
distances; finally, the relation is not established for 
transitional matrices or scatterers. 

When it holds, this relation is such that the estab
lishment of local order under thermal equilibrium 

FIG. 1. Optical approximation. 

1 Metallic Solid Solutions (W. A. Benjamin and Company, Inc., 
New York, 1963). 

2 A. Blandin and J. L. Deplante, J. Phys. Radium 23, 609 
(1962). 

3 P. G. de Gennes and J. Friedel, Phys. Chem. Solids 4, 71 
(1958). M. T. Beal, ibid. 15, 77 (1960). 

4 M . T. Beal, thesis, Paris, June 1963 (unpublished); Phys. 
Chem. Solids (to be published); cf. also S. H. Liu, Phys. Rev. 
132, 589 (1963). 

should always increase the isotropic part of the residual 
resistivity. 

We first consider in detail the nonmagnetic case. The 
relation is then extended to magnetic scatterers. 

II. NONMAGNETIC SCATTERERS 

We consider two spherically symmetrical impurities, 
one at the origin, the second at point d. / / they are weak 
scatterers, the optical approximation can be used to 
describe the wave function of an incoming electron k 
scattered by the pair 

^ e * k . r 1 + ^ c a t t ^ ^ r O + ^ ' ^ c a t t 2(d2,k,r2) . (1) 

?h r2, 0i, 02 are explained in Fig. 1. i /w t % is the scattered 
part of the wave function of electron k when impurity 
i is isolated. 

In writing (1), use has been made of the fact that the 
self-consistent potential U of the pair of scatterers only 
deviates from the sum of the potentials Vi of each 
scatterer, when isolated, by interference terms of the 
second order in Vi. Such terms are neglected in the 
optical approximation (1). 

A. Interference Effect 

At large distances from the scattering pair, formula 
(1) reduces to 

1 ^ * - ' H - / i ( 0 i ) +eik'if2(d2) . (2) 
r\ r2 

\fi(6i)\2 is the differential cross section of the ith 
scatterer, when isolated. 

The total resistivity cross section is thus, using well 
known relations, 

er(co,rf) = cri+cr2+ f f*i(d)f2(d)eiK'd(l-cosO) 

Xsinddd+cc. (3) 

K=(kM*/r) — kikf is the scattering vector for an in
coming electron at the Fermi level, with wave vector 
kM parallel to the electrical current; o> is the angle 
between d and kM (Fig. 1); a{ the resistivity cross 
section for scatterer i when isolated. 
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FIG. 2. Variation with distance d of 
the isotropic part of the electrical re
sistivity due to a pair of identical 
impurities. 
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M 
Owing to the angular dependence with d, the excess 

resistivity 8a = <r—<j\—a2 is anisotropic.5 I t is however 
easy to check that the average cross section, for pairs 
oriented at random, is 

(0 - )av=0- l+C2+(5o- )a (4) 
with 

<5(7>av -> 2OiO-2)1'2 for d -> 0 (le.,kMd«l) (5) 

and 

(5cr)a • [ / * l W / 2 W + CC.} 
2 cos2kMd 

for d—>oo (i.e., &M<££>1) . (6) 

Let £/*(r) be the potentials of the scatterers, with 
Fourier components 

Using the relation /(*•)= - (l/27r)Z7;(2&M), Eq. (6) 
can also be written 

(da), 
4 cos2k M<1 

—U1(2kM)U2(2kM) 
7T2 (2)W)2 

for ^—> oo . (7) 

Figure 2 gives schematically the relative variation 
of the average residual resistivity (p)av/(pi+P2) of the 
pair, in the case of two identical scatterers.6 

B. Energy of Interaction 

The total scattering potentials Vi of the two im
purities are made of a "bare" part Vi and of a "clothing" 
part Wi. The F / s are either the Coulomb field due to 
the excess nuclear charge describing a change of 

5 B . Caroli, 3 Cycle, thesis, Orsay, 1961 (unpublished). 
6 In drawing this curve, use has been made of the fact that, for 

likely scatterers, the expression between brackets in Eq. (6) is 
near to (<ri<r2)1/2; it would be exactly equal to (ai^)112 only in the 
unphysical case of delta-function scatterers. 

valency, or a change in "effective" potential, describing 
a change in period (cf. Ref. 2). The TF/s are due to the 
reaction of the valence electrons, screening out the 
external perturbation V{. 

As long as the impurities are weak scatterers, 

where 
2k\ 

tK = 
7fK2\ 

Ui(K)=Vi(K)/eK, 

F km/ K2 \ \K+2kM\l 
1 + — ( l ) l n 

(8) 

(9) 

is the dielectric constant7 for wave number K of the 
valence electrons.8 Also the interaction energy between 
the impurities is, for weak scatterers, in atomic units 
(e=h=m=l), 

w(d) = -
1 

(2TT)3 

K2 

— e 
4TT 

-eKU1(K)U2(K)eiK'^K. (10) 

The 

w(d) 

asymptotic 

(2kMy 
-» U 

(2TY 

form, 

l(2kM 

C 

valid for &M<£$>1, 

COS2&M^ 
r)U2(2kM) 

(2kMdY 

for 
. Discussion 

is 

d (11) 

For normal metals, the nearest-neighbor distance do 
is such that &Md(P^7 to 10. The asymptotic formulas 
(6) or (7) and (11) thus hold for any distance d, giving 
an interference effect (5p)av=(p)aV—(P1+P2) and an 
interaction energy w small, appreciable only at near-
neighbor distances. In semimetals, with ^M^O<3C1 for 
nearest neighbors, one expects on the contrary the 
asymptotic formulas for d—> 00 to apply only at 
distances d very large compared with interatomic 

7 As shown in the Appendix, no difficulty arises in the com
putation of (5<r)av from the singularity of Ui(K) for K—2kM> 

8 J. Bardeen, Phys. Rev. 52, 688 (1937). P. Nozieres and D. 
Pines, Nuovo Cimento 9, 470 (1958); A. Blandin, thesis, Paris, 
1961 (unpublished); J. Friedel, Low-Temperature Physics, Les 
Houches Summer School (Presses Universitaires de France, Paris, 
1961). 
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distances; for d^kj^r1, formula (5) shows that the two 
impurities should scatter coherently: two identical 
impurities (Ui=U2) should have a resistivity about 
twice as large as when they are separated; two im
purities of opposite character (Ui= — U2) should have 
very little total resistivity. 

When relations (6) or (7) and (11) hold, it is seen 
that the change in average resistivity (5p)av due to 
interference is directly proportional to the energy of 
interaction w, whatever the nature of the scatterers or 
their distance. The coefficient of proportionality is 
negative. Starting from a perfectly disordered solid 
solution and letting a local order appear under thermo-
dynamical equilibrium, the pairs of solute atoms for 
which w>0 (thus (5p)av<0) should decrease in number, 
while those for which w<0 (thus (§p)av>0) should 
increase. Both types of movement lead, as stated above, 
to an increase in residual resistivity (hp)i. More pre
cisely, it is easy to show1 that, at temperature T, and 
for an atomic concentration c of scatterers, 

(5p)T 

=£-
K<0 H 

-c2+0 
\ 7 V 

U' (12) 

P1+P2 kBT ai+a2 

_16&M4 1 W ( 2 W W ( 2 W 

7T3 kBTU1^2kM)+U2^2kM)C 

cos2(2kMd) 

xE +0\ 
(2kMdy 

where the summation extends over all distances ^ b e 
tween one lattice site and the others. 

This conclusion strictly applies to weak nonmagnetic 
scatterers in normal metals. Normal substitutional or 
interstitial solid solutions fall roughly in this class. 
Experimental evidence, although scant, suggests that 
the relation established between w(d) and (5p(d))av is 
observed as to the sign and order of magnitude.3*4 A 
number of restrictions must be stressed: 
(a). (5p)av is an isotropic average, for all possible 
directions of the electric current with respect to the 
pair. I t is not exactly the average at fixed current 
direction, for all possible orientations of pairs of im
purities in a crystal, because these are limited in 
number. 
(b). The Born approximation used here is not very 
satisfactory: it is known8,9 to give not very good values 
for the resistivity of isolated impurities. The relation 
obtained is thus at best approximate in actual cases. 
This approximation might be poor for strong scatterers, 
such as vacancies or transitional impurities.4'8,10 

III. MAGNETIC SCATTERERS 

A similar relation between (da(d))&v and w(d) holds 
for magnetic impurities, and is thus involved in both 

9 J. Friedel, 1963 Mol Summer School (North-Holland Publish
ing Company, Amsterdam, 1964). 

10 J. Friedel, J. Phys. Radium 23, 692 (1962). 

atomic and magnetic short-range order.3,4 I t is again 
strictly valid within the Born approximation. I t should 
thus apply very well to rare-earth impurities or pure 
rare-earth metals. I t is not proved here for transitional 
impurities, although it might be that the resistance 
minimum observed at low temperature in alloys such 
as CuMn has the same physical origin.4,5,11 

A. Energy of Interaction 

Let us take two magnetic impurities, one at the site 
Ri with spin Si, the other at R2 with spin S2. We 
suppose that the interaction between Si and S2 is by 
indirect exchange, via the conduction electrons of the 
matrix considered as free electrons (spin s, wave 
vector k). The Hamiltonian for the two spins Si and 
S2 is 

# = - 2 / ( r - R i ) s - S i - 2 / ( r - R 2 ) s - S 2 . (13) 

J(r—R^) is the spin-dependent potential between s 
and Si. A second-order perturbation calculation leads 
to the interaction between Si and S2, 

w(J) = Trace[4(s-Si)(s-S2)] / 
J k< 

d*k 

J k' 

k<kM (2TT)3 

^ 3 k V ( k - k 0 . d | / ( k - k / ) | 

*>** VvKW-W*} 
+ c c , (14) 

where d=Ri—R2 . 
This is the Yosida formulation,12 with a general form 

for J(K). We have only to suppose (cf. Appendix) that 
J{K) is continuous and remains finite for all K. I t is 
well known12 that (14) can be written: 

w(d)~-

with 

-S i -S? 
4x4d 

K\J(K)\2F(K) sinKddK (15) 

F(K) = 1-
4k MK 

•In 
2kM+K 

2KM—K 

when kM is the Fermi level. The asymptotic form 
analogous to (11) for kMdy>\ is 

( 2 & M ) 4 COS2&M^ 
w(d) -> S rS2 /2(2&M) . 

(2TT)3 (2kMdY 
(16) 

This is the Ruderman-Kittel-Yosida indirect inter
action,12 without particular restrictions about J(21ZM) 
(cf. Appendix). 

11 A. J. Dekker, Physica 24, 697 (1958); 25, 1244 (1959). A. D. 
Brailsford and A. W. Overhauser, Phys. Chem. Solids 15, 140 
(1960), 21, 127 (1961). T. Van Peski Tingergen and A. J. Dekker, 
Physica 29, 917 (1963). 

12 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); 
K. Yosida, ibid. 106, 893 (1957); T. Kasuya, Progr. Theoret. 
Phys. (Kyoto) 16,45 (1956). 
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B. Resistivity 

The interference factor is the same as (3) for chemical 
interactions but 

f*i(f>)M<» = — \J(K)\\SVS2). (17) 
4TT2 

In terms of the density matrix, the correlations are 
evaluated as follows: 

TracerSi-S2 exT>{—w(d)/kBT}~\ 
<SrS2) = - - . (18) 

Trace[exp{ -w{d)/kBT}~] 

For high temperatures, (18) can be expanded in powers 
of 1/T. Then the total resistivity p due to the scattering 
of conduction electrons s by Si and S2 is 

P 
= 1 

P1+P2 

I (SvS2)e
iK'*\J(K)\2(l-cosO) sinOdd 

Jo 
+ ; , (19) 

E [ (Si2)\J(K)\*(l-cosd) sindde 
* io 

Pi and p2 being the individual incoherent resistivities of 
Si and S2. (18) and (19) lead at large distances d to 

p 4J2(2kM) (2kMY 
> 1+ 

P1+P2 3kBT (27r)3 

2 5 I ( 5 I + 1 ) 5 2 ( 5 2 + 1 ) cos2(2kMd) 
X 

Si(Si+l)+S 2 (S 2 +l) (2kMdy 

for d->oo. (20) 

The excess resistivity p— (pi+p2) under thermal 
equilibrium, due to interference between the scatterers, 
is again positive, as for nonmagnetic impurities [formula 
(12)]. 
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APPENDIX: ON THE VALIDITY OF THE 
ASYMPTOTIC FORM OF w AND 5<r 

The interaction energy as well as interference effects 
lead to similar integrations over K; but the first is 
taken from K=0 to K— oo ? i.e., 

1 r00 

- / / i f f l sinKddK (Al) 
dJo 

and the second stops at K=2kM' 

- / f2(K) sinKddK, (A2) 
d Jo 

where fi(K) and f2(K) are functions of K given 
explicitly later. 

The calculations of the corresponding asymptotic 
expressions for large distances d between the two 
scatterers involve integrations by parts, keeping only 
the smallest power of 1/d. In this operation, attention 
must be paid to the structure of fi(K) and f2(K). 
For magnetic scatterers, 

MK)=\J(K)\*F(K)K, (A3) 

where F(K) is given by Eq. (15), and 

f2(K)=\J(K)\*K>, (A4) 

where J{K) is the Fourier transform of the exchange 
integral. 

For nonmagnetic scatterers, 

f1(K)=\U(K)\^K'e(K)^K (A5) 
and 

f2(K)=\U(K)\*K\ (A6) 

where eK is given by Eq. (9) and the simplifying 
assumption is made that 

Ux(K)= U2(K) = U(K) = 4rZ/K2e(K), (A7) 

Z being the charge of each scatterer. e(K) and F(K) 
have no singularities but their derivatives are infinite 
for K=2kM. U(K) and J(K) are assumed to be con
tinuous and finite functions of K for all values of K. 

Now, it is easy to verify that /i(0), /i(°°) and 
/2(0) = 0. Then the leading term in the energy, in 1/d2, 
vanishes between the limits 0 and °o. The next term, 
in \/dz, involves the derivative of fi(K), which has a 
singularity at K=2kM> The main contribution to this 
term is in the immediate neighborhood of 2kM', it is in 
cos2kMd/dz, as computed in the text. But the leading 
term in the resistivity, in 1/d2, does not vanish for the 
limit 2ku. It is the term considered in the text. The next 
term involves the possible singularity at 2kM in the 
derivative of f2(K); it is in cos2kMd/dz, thus negligible 
for kMd»l compared with the first term in 1/d2. 

More generally, for regular, finite potentials, with 
regular derivatives, there is no trouble. For a finite 
potential with infinite derivatives for some value 
K=Ki, the contribution to the energy comes from the 
neighborhood of Ki, but in the resistivity the singularity 
does not appear in the asymptotic form stopped at the 
leading term in 1/d. The case of a step-function 
potential would be treated in the same way. 


